- difference isomorphism
- мат.разностный изоморфизм
English-Russian scientific dictionary. 2008.
English-Russian scientific dictionary. 2008.
Isomorphism of categories — In category theory, two categories C and D are isomorphic if there exist functors F : C rarr; D and G : D rarr; C which are mutually inverse to each other, i.e. FG = 1 D (the identity functor on D ) and GF = 1 C . This means that both the objects … Wikipedia
Vector space — This article is about linear (vector) spaces. For the structure in incidence geometry, see Linear space (geometry). Vector addition and scalar multiplication: a vector v (blue) is added to another vector w (red, upper illustration). Below, w is… … Wikipedia
Implementation of mathematics in set theory — This article examines the implementation of mathematical concepts in set theory. The implementation of a number of basic mathematical concepts is carried out in parallel in ZFC (the dominant set theory) and in NFU, the version of Quine s New… … Wikipedia
Cartan connection — In the mathematical field of differential geometry, a Cartan connection is a flexible generalization of the notion of an affine connection. It may also be regarded as a specialization of the general concept of a principal connection, in which the … Wikipedia
Hilbert space — For the Hilbert space filling curve, see Hilbert curve. Hilbert spaces can be used to study the harmonics of vibrating strings. The mathematical concept of a Hilbert space, named after David Hilbert, generalizes the notion of Euclidean space. It… … Wikipedia
Signed graph — In the area of graph theory in mathematics, a signed graph is a graph in which each edge has a positive or negative sign.Formally, a signed graph Sigma; is a pair ( G , sigma;) that consists of a graph G = ( V , E ) and a sign mapping or… … Wikipedia
Boolean algebras canonically defined — Boolean algebras have been formally defined variously as a kind of lattice and as a kind of ring. This article presents them more neutrally but equally formally as simply the models of the equational theory of two values, and observes the… … Wikipedia
Atiyah–Singer index theorem — In the mathematics of manifolds and differential operators, the Atiyah–Singer index theorem states that for an elliptic differential operator on a compact manifold, the analytical index (closely related to the dimension of the space of solutions) … Wikipedia
G-structure — In differential geometry, a G structure on an n manifold M , for a given structure group [Which is a Lie group G o GL(n,mathbf{R}) mapping to the general linear group GL(n,mathbf{R}). This is often but not always a Lie subgroup; for instance, for … Wikipedia
Pre-Abelian category — In mathematics, specifically in category theory, a pre Abelian category is an additive category that has all kernels and cokernels.Spelled out in more detail, this means that a category C is pre Abelian if: # C is preadditive, that is enriched… … Wikipedia
Boolean algebra (introduction) — Boolean algebra, developed in 1854 by George Boole in his book An Investigation of the Laws of Thought , is a variant of ordinary algebra as taught in high school. Boolean algebra differs from ordinary algebra in three ways: in the values that… … Wikipedia